Overview of Flood Barrier Testing Strategies Project

Zhegang Ma, Sai Zhang, Curtis L Smith March 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Overview of Flood Barrier Testing Strategies Project

Zhegang Ma, Sai Zhang, Curtis L Smith

March 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Idaho National Laboratory

Overview of Flood Barrier Testing Strategies Project

Zhegang Ma, Ph.D., P.E. Sai Zhang, Ph.D. Curtis Smith, Ph.D.

NRC Flood Barrier Testing Strategies Workshop March 12, 2020 Rockville, MD, USA

Background

- Flood barriers are part of the nuclear power plant (NPP) flood protection features that prevent structures, systems, and components (SSCs) from experiencing flooding and mitigate the effects of flooding
- Flood barriers can be on-site or off-site, permanent or temporary, active or passive
 - Permanent: external and internal walls, watertight doors, and flood penetration seals
 - Temporary: sandbags, temporary walls, removable doors, and stop-logs

Background (cont'd)

- Operational experiences have shown that flood barrier performance could have significant safety implications, especially as the domestic reactor fleet ages
 - Inadequate design or installation
 - Non-functional due to aging and degradation
 - Inadequate inspection procedures or acceptance criteria for detecting deficient flood barriers
 - Deficient analyses associated with flood barriers
 - Discrepancies between tested flood barrier designs and plantinstalled designs
 - Installed barriers modified but not evaluated or tested
 - Deficient flood barriers due to lack of fill or being composed of non-watertight materials
 - Missing penetration seals or internal conduit seals

Background (cont'd)

- Flood barriers must be adequately tested, inspected, and maintained to provide reasonable assurance that they can perform their intended functions in the event of flooding
- Project objective: to identify and assess options and develop strategies for testing NPP flood barriers
 - Investigate the current state of NPP decommissioning which impacts opportunities and challenges for harvesting
 - Consider technical and logistical challenges in harvesting and laboratory testing of flood barriers
 - Potential alternatives to harvesting, such as in-situ testing, enhanced inspection

Project Team

- > INL
 - Curtis Smith, PI
 - Zhegang Ma
 - Sai Zhang
 - > John Biersdorf
- Idaho State University
 - Chad Pope, Professor

Project Status

- Task 1: Review Available Information on Flood Barriers
 - Licensee walkdown reports
 - Previous NRC research
 - Nuclear Energy Institute (NEI), Electric Power Research Institutes (EPRI) reports
 - Information from vendors
 - Decommissioning info
 - Other government agencies (e.g., U.S. Army Corps of Engineers)
 - International organizations (e.g., Nuclear Energy Agency)
 - Status Task report drafted, reviewed, and revised

Project Status (cont'd)

- Task 2: Flood Barrier Testing Workshop
 - Present preliminary results from the project
 - Engage industry stakeholders and technical experts to provide inputs and insights
 - Status Ongoing
- Task 3: International Harvesting Workshop
 - Cancelled
- Task 4: Knowledge Transfer
 - Participate the NRC PFHA Research Workshop Completed
 - Prepare a draft NUREG/CR report 9/15/2020

Project Preliminary Results

- Literature Review (presented separately)
 - Including plant flooding walkdown report review
- Flood Barrier Categorization and Terminology
- Flood Barrier Overview
- Potential Flood Barrier Testing Facilities
- Previous Flood Barrier Tests (presented separately)
- Flood Barrier Testing Strategies
 - Considerations in developing flood barrier testing strategies

Flood Barrier Overview

- Categorization
 - On-site vs. Off-site
 - Permanent vs. Temporary
 - Active vs. Passive
- On-site Permanent
 - Penetration Seals
 - Watertight Doors
- On-site Temporary
 - Disposable absorbent pad, etc.
 - Reusable floodgates, hydrostatic tarp, etc.

Operating Plants

- Nearly 100 licensed NPPs in the United States
- Potential testing facilities for in-situ non-destructive testing or enhanced inspection
- Testing must be carefully incorporated into plant's O&M schedule to avoid inadvertently impacting the safety and reliability of plant operations

U.S. Operating Commercial Nuclear Power Reactors

- Decommissioning Plants
 - About 20 power reactors undergoing decommissioning
- Major Decommissioning Companies
 - Holtec Decommissioning International (HDI)
 - Oyster Creek, Pilgrim
 - Purchase agreements for Palisades and Indian Point
 - Northstar
 - Vermont Yankee
 - EnergySolutions
 - Zion and La Crosse

- Other Testing Facilities Idaho State University Flood Testing Facility
 - Portal Evaluation Tank (PET)
 - A steel, semi-cylindrical tank with a height and diameter of 8 ft, can hold up to 2,000-gal of water
 - > 5 HP submersible pump inside a 8,000-gal water reservoir

Inlet electromagnetic flow meter, ultrasonic depth sensor, and pressure transducer, pressure and air relief valves and a digital pressure gauge

- Other Testing Facilities Framatome Laboratory Flood Testing Facility
 - Test apparatus for research on penetration seal testing protocol
 - Three main components
 - Pressure chamber
 - Concrete test deck
 - Water leakage measurement system

Flood Barrier Testing Strategies Considerations

- What to be tested?
 - Hundreds of flood barriers
 - Risk/Safety ranking
 - Location (i.e., Accessibility)
- Type of Flood Barriers for Testing
 - Seals, Doors, Walls, Floors, Temporary Barriers
- Codes and Standards
 - Penetration Seals
 - UL 1479 and UL 2079 for pressure testing of fire barriers
 - Doors
 - Door testing standards, e.g., ASTM E331
 - Analytical methods
 - Base Structures

Flood Barrier Testing Strategies (Cont'd)

Protocols and Plans

- Testing Locations
 - In-situ (in plant, in place)
 - Ex-situ but on-site (not in place, but on-site)
 - Ex-situ and off-site (off-site testing facilities)

Flood Effect and Failure Modes

- Hydrostatic pressure, hydrodynamic pressure, debris impact
- Excessive leakage, loss of integrity, displacement, overtopping

Mediums

- Water, air, steam
- Standing (without pressure) static pressure testing
- Under pressure (via pump or air) dynamic pressure testing

Flood Barrier Testing Strategies (Cont'd)

Protocols and Plans

Parameters

- Input Parameters: test pressure, water levels, flow rate, duration of applied pressure, rate of pressure change, debris size
- Output Parameters: leakage rate, maximum pressure before loss of integrity
- Other Parameters: water temperature, test duration, time history

Acceptance Criteria

- In accordance with the functional requirements
- No/neglect leakage, maintained integrity under static and/or dynamic pressure

Other aspects

Destructive vs non-destructive, sample vs actual flood barriers

Flood Barrier Testing Strategies (Cont'd)

- We want to engage industry stakeholders and technical experts for insights and inputs
 - During the workshop
 - After the workshop

Thomas.Aird@nrc.gov Curtis.Smith@inl.gov Zhegang.Ma@inl.gov